Integrated Network Pharmacology Analysis and Pharmacological Evaluation to Explore the Active Components and Mechanism of Abelmoschus manihot (L.) Medik. on Renal Fibrosis

综合网络药理学分析及药理评价探讨黄蜀葵抗肾纤维化活性成分及作用机制

阅读:4
作者:Lifei Gu, Fang Hong, Kaikai Fan, Lei Zhao, Chunlei Zhang, Boyang Yu, Chengzhi Chai

Background

Renal fibrosis is a common pathological outcome of chronic kidney diseases (CKD) that is considered as a global public health issue with high morbidity and mortality. The dry corolla of Abelmoschus manihot (L.) Medik. (AMC) has been used for chronic nephritis in clinic and showed a superior effect in alleviating proteinuria in CKD patients to losartan. However, the effective components and underlying mechanism of AMC in the treatment of renal fibrosis have not been systematically clarified.

Conclusion

Our results predicted active components and potential targets of AMC for the application to renal fibrosis from a holistic perspective, as well as provided valuable direction for further research of AMC and improved comprehension of renal fibrosis pathogenesis.

Methods

Based on drug-likeness evaluation, oral bioavailability prediction and compound contents, a systematic network pharmacology analysis was conducted to predict the active ingredients. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis and protein-protein interaction analysis were applied to predict the potential pathway and target of AMC against renal fibrosis. The formula of component contribution index (CI) based on the algorithm was used to screen the principal active compounds of AMC in the treatment of renal fibrosis. Finally, pharmacological evaluation was conducted to validate the protective effect and primary predicted mechanism of AMC in the treatment of renal fibrosis on a 5/6 nephrectomy mice model.

Results

Fourteen potential active components of AMC possessing favorable pharmacokinetic profiles and biological activities were selected and hit by 17 targets closely related to renal fibrosis. Quercetin, caffeic acid, 9.12-octadecadienoic acid, and myricetin are recognized as the more highly predictive components as their cumulative contribution rate reached 85.86%. The AMC administration on 5/6 nephrectomy mice showed a protective effect on kidney function and renal fibrosis. The hub genes analysis revealed that AMC plays a major role in inhibiting epithelial-to-mesenchymal transition during renal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。