Electroacupuncture Preconditioning Reduces Oxidative Stress in the Acute Phase of Cerebral Ischemia-Reperfusion in Rats by Regulating Iron Metabolism Pathways

电针预处理通过调节铁代谢途径减轻大鼠脑缺血再灌注急性期氧化应激

阅读:5
作者:Runyu Liang, Qiang Tang, Wenjing Song, Mei Zhang, Lili Teng, Yuying Kang, Luwen Zhu

Background

Oxidative stress is an important mechanism of cerebral ischemia-reperfusion injury. Ferroptosis caused by iron overload after cerebral ischemia-reperfusion is considered a common cause of oxidative stress. Many recent studies have shown that electroacupuncture (EA) can regulate the expression of inflammatory factors, and the use of electroacupuncture preconditioning can produce a protective effect, which can reduce injury after cerebral ischemia and reperfusion. We aimed to assess whether EA could be used to reduce oxidative stress.

Conclusions

Electroacupuncture preconditioning can reduce oxidative stress after cerebral ischemia-reperfusion by regulating iron overload.

Methods

The oxidative stress level of rats during the acute phase of cerebral ischemia and reperfusion was assessed with and without preconditioning with EA. Molecular biology methods were used to detect iron metabolism and oxidative stress-related proteins.

Results

Rats that had EA preconditioning had lower infarct volumes than rats in the control group. Furthermore, western blot analysis showed that the expression of iron metabolism-related protein FPN-1 was higher in the intervention group than in the model group after reperfusion. In this regard, further investigation also demonstrated higher expression of glutathione and glutathione peroxidase-4, and lower reactive oxygen species values in the brain tissue of the EA group were compared with those of the control group rats. Conclusions: Electroacupuncture preconditioning can reduce oxidative stress after cerebral ischemia-reperfusion by regulating iron overload.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。