Tobacco Mosaic Viral Nanoparticle Inhibited Osteoclastogenesis Through Inhibiting mTOR/AKT Signaling

烟草花叶病毒纳米颗粒通过抑制 mTOR/AKT 信号传导抑制破骨细胞生成

阅读:6
作者:Zhongshu Shan #, Hongtao Bi #, Angxiu Suonan, Yong Gu, Huan Zhou, Kun Xi, Rui Xiong, Hua Chen, Liang Chen

Discussion

These data demonstrated the great potential of TMV VNPs to be developed into biomaterial for bone injury repair or replacement.

Methods

Raw264.7 cells were cultured in osteoclastogenic medium in culture plates coated with or without TMV and TMV-RGD1 VNPs, followed by TRAP staining, RT-qPCR and WB assessing expression of osteoclastogenic marker genes, and immunofluorescence assessing NF-κB activation. TMV and TMV-RGD1-modified hyaluronic acid hydrogel were used to treat mouse tibial bone injury. Bone injury healing was checked by micro-CT and Masson staining.

Results

TMV and TMV-RGD1 VNPs significantly inhibited osteoclast differentiation and downregulated the expression of osteoclastogenic marker genes Ctr, Ctsk, Mmp-9, Rank, and Trap. Moreover, TMV and TMV-RGD1 VNPs inhibited NF-κB p65 phosphorylation and nuclear translocation, as well as activation of mTOR/AKT signaling pathway. TMV and TMV-RGD1-modified HA hydrogel strongly promoted mouse tibial bone injury with increased bone mass compared to plain HA hydrogel. The amount of osteoclasts was significantly reduced in TMV and TMV-RGD1 treated mice. TMV-RGD1 was more effective than TMV in inhibiting osteoclast differentiation and promoting bone injury repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。