Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway

流体剪切应力通过 ERK1/2 通路诱导成骨细胞分化并将细胞周期停滞在 G0 期

阅读:11
作者:Liyin Yu, Xingfeng Ma, Junqin Sun, Jie Tong, Liang Shi, Lijun Sun, Jianbao Zhang

Abstract

Numerous studies have demonstrated that fluid shear stress (FSS) may promote the proliferation and differentiation of osteoblast cells. However, proliferation and differentiation are mutually exclusive processes and are unlikely to be promoted by FSS simultaneously. Cell proliferation and differentiation induced by FSS has rarely been reported. In order to provide an insight into this process, the present study investigated the effects of FSS on osteoblast‑like MC3T3 cells in the G0/G1 phase, the period during which the fate of a cell is determined. The results of the present study demonstrated that FSS promoted alkaline phosphatase (ALP) activity, and the mRNA expression and protein expression of osteocalcin, collagen type I and runt‑related transcription factor 2 (Runx2), while inhibiting DNA synthesis and arresting the cell cycle at the G0/G1 phase. The increase in Runx2 and ALP activity was accompanied by the activation of calcium/calmodulin‑dependent protein kinase type II (CaMK II) and extracellular signal‑regulated kinases 1/2 (ERK1/2), which was completely abolished by treatment with KN93 and U0126, respectively. In addition, the inhibition of ERK1/2, although not CaMK II, decreased p21Cip/Kip activity, resulting in an increase in cell number and S phase re‑entry. The results of the present study indicated that in the G0/G1 phase, FSS promoted osteoblast differentiation via the CaMK II and ERK1/2 signaling pathways, and blocked the cell cycle at the G0/G1 phase via the ERK1/2 pathway only. The present findings provided an increased understanding of osteoblastic mechanobiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。