Exploring the molecular mechanism of Yinao Fujian formula on ischemic stroke based on network pharmacology and experimental verification

基于网络药理学及实验验证探究益脑复健方治疗缺血性中风的分子机制

阅读:5
作者:Jing Lu, Xiaolei Tang, Yuxin Zhang, Hongbo Chu, Chenxu Jing, Yufeng Wang, Huijuan Lou, Ziqi Zhu, Daqing Zhao, Liwei Sun, Deyu Cong

Background

Ischemic stroke (IS) is a leading cause of long-term disability and even mortality, threatening people's lives. Yinao Fujian (YNFJ) formula is a Traditional Chinese Medicine formula that has been widely used to treat patients with IS. However, the molecular mechanism of YNFJ for the treatment of IS is still elusive. Our study aimed to explore the potential protective effect and the underlying mechanisms of YNFJ on IS using a network pharmacology approach coupled with experimental validation. Materials and

Conclusion

Taken together, the findings in our research showed that the protective effects of YNFJ on IS were mainly achieved by regulating the NF-κB and Nrf2/HO-1 signaling pathways to inhibit oxidative stress damage and inflammatory damage of microglia.

Methods

Effective compounds of YNFJ were collected from BATMAN-TCM and TCMSP databases, while IS targets were obtained from GeneCards, OMIM, TTD and DrugBank databases. The protein-protein interaction (PPI) network was constructed to further screen the hub targets of YNFJ in IS treatment. GO and KEGG enrichment analyses were used to identify the critical biological processes and signaling pathways of YNFJ for IS. Moreover, Nissl staining, HE, TTC staining and Tunel staining were used in the MCAO model to prove the neuroprotective effect of YNFJ. Oxidative damage, inflammatory factor release and related pathways were tested in MCAO rat model and hypoxia-induced BV2 cell model, respectively.

Results

We found that YNFJ treatment significantly alleviated MCAO-induced nerve damage and apoptosis. Then, network pharmacology screening combined with literature research revealed IL6, TNF, PTGS2, NFKBIA and NFE2L2 as the critical targets in a PPI network. Moreover, the top 20 signaling pathways and biological processes associated with the protective effects of YNFJ on IS were enriched through GO and KEGG analyses. Further analysis indicated that NF-κB and Nrf2/HO-1 signaling pathways might be highly involved in the protective effects of YNFJ on IS. Finally, in vitro and in vivo experiments confirmed that YNFJ inhibited the release of inflammatory factors (IL-6 and TNF-α) and MDA content, and increased the activity of SOD. In terms of the mechanism, YNFJ inhibited the release of inflammatory factors by suppressing the NF-κB pathway and decreased the expression of iNOS and COX-2 to protect microglia from inflammation damage. In addition, YNFJ initiated the dissociation of Keap-1 and Nrf2, and activated the downstream protein HO-1, NQO1, thus decreasing oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。