The structure-energy landscape of NMDA receptor gating

NMDA 受体门控的结构-能量图

阅读:7
作者:Drew M Dolino, Sudeshna Chatterjee, David M MacLean, Charlotte Flatebo, Logan D C Bishop, Sana A Shaikh, Christy F Landes, Vasanthi Jayaraman

Abstract

N-Methyl-D-aspartate (NMDA) receptors are the main calcium-permeable excitatory receptors in the mammalian central nervous system. The NMDA receptor gating is complex, exhibiting multiple closed, open, and desensitized states; however, central questions regarding the conformations and energetics of the transmembrane domains as they relate to the gating states are still unanswered. Here, using single-molecule Förster resonance energy transfer (smFRET), we map the energy landscape of the first transmembrane segment of the Rattus norvegicus NMDA receptor under resting and various liganded conditions. These results show kinetically and structurally distinct changes associated with apo, agonist-bound, and inhibited receptors linked by a linear mechanism of gating at this site. Furthermore, the smFRET data suggest that allosteric inhibition by zinc occurs by an uncoupling of the agonist-induced changes at the extracellular domains from the gating motions leading to an apo-like state, while dizocilpine, a pore blocker, stabilizes multiple closely packed transmembrane states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。