Mitochondrial function and energy metabolism in umbilical cord blood- and bone marrow-derived mesenchymal stem cells

脐带血和骨髓间充质干细胞的线粒体功能和能量代谢

阅读:5
作者:Mika Pietilä, Sami Palomäki, Siri Lehtonen, Ilja Ritamo, Leena Valmu, Johanna Nystedt, Saara Laitinen, Hannnu-Ville Leskelä, Raija Sormunen, Juha Pesälä, Katrina Nordström, Ari Vepsäläinen, Petri Lehenkari

Abstract

Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donors younger than 18 years of age (BMMSC <18) and those more than 50 years of age (BMMSC >50). Changes of ultrastructure and energy metabolism during osteogenic differentiation in all hMSC types were studied in detail. Results show that despite similar surface antigen characteristics, the UCBMSCs had smaller cell surface area and possessed more abundant rough endoplasmic reticulum than BMMSC >50. BMMSC <18 were morphologically more UCBMSC-like. UCBMSC showed dramatically higher mitochondrial-to-cytoplasm area ratio and elevated superoxide and manganese superoxide dismutase (MnSOD) levels as compared with BMMSC >50 and BMMSC <18. All hMSCs types showed changes indicative of mitochondrial activation after 2 weeks of osteogenic differentiation, and the increase in mitochondrial-to-cytoplasm area ratio appears to be one of the first steps in the differentiation process. However, BMMSC >50 showed a lower level of mitochondrial maturation and differentiation capacity. UCBMSCs and BMMSCs also showed a different pattern of exocytosed proteins and glycoproteoglycansins. These results indicate that hMSCs with similar cell surface antigen expression have different mitochondrial and functional properties, suggesting different maturation levels and other significant biological variations of the hMSCs. Therefore, it appears that mitochondrial analysis presents useful characterization criteria for hMSCs intended for clinical use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。