Gukang Capsule Promotes Fracture Healing by Activating BMP/SMAD and Wnt/ β-Catenin Signaling Pathways

骨康胶囊通过激活BMP/SMAD和Wnt/β-Catenin信号通路促进骨折愈合

阅读:5
作者:Xue Ma, Jian Yang, Ting Liu, Jing Li, Yanyu Lan, Yonglin Wang, Aimin Wang, Ye Tian, Yongjun Li

Background

Gukang capsule (GKC) is a traditional Chinese medicine formulation which has been used extensively in the clinical treatment of bone fractures. However, the mechanisms underlying its effects on fracture healing remain unclear.

Conclusions

GKC promotes fracture healing by activating the Wnt/β-catenin and BMP/Smad signaling pathways and increasing osteoprotegerin (OPG) secretion by osteoblasts (OBs), which prevents receptor activator of nuclear factor kappa B ligand (RANKL) binding to RANK.

Methods

In this study we used a rabbit radius fracture model, and we measured the serum content of bone alkaline phosphatase (ALP), calcium, and phosphorus and examined pathology of the fracture site as indicators of the fracture healing effects of GKC. SaOS-2 human osteosarcoma cells were used to measure (i) ALP activity, (ii) ornithine transcarbamylase (OTC), calcium, and mineralization levels, (iii) the expression of osteogenic-related genes, that is, runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), collagen I (COL-I), osteopontin (OPN), OTC, and osterix (Osx), and (iv) the expression of key proteins in the Wnt/β-catenin and BMP/SMAD signaling pathways to study the mechanisms by which GKC promotes fracture healing.

Results

We found that GKC effectively promotes radius fracture healing in rabbits and enhances ALP activity, increases OTC and calcium levels, and stimulates the formation of mineralized nodules in SaOS-2 cells. Moreover, COL-I, OTC, Osx, BMP2, and OPN expression levels were higher in SaOS-2 cells treated with GKC than control cells. GKC upregulates glycogen synthase kinase 3β (GSK3β) phosphorylation and Smad1/5 and β-catenin protein levels, thereby activating Wnt/β-catenin and BMP/Smad signaling pathways. Inhibitors of the Wnt/β-catenin and BMP/Smad signaling pathways (DKK1 and Noggin, respectively) suppress the osteogenic effects of GKC. Conclusions: GKC promotes fracture healing by activating the Wnt/β-catenin and BMP/Smad signaling pathways and increasing osteoprotegerin (OPG) secretion by osteoblasts (OBs), which prevents receptor activator of nuclear factor kappa B ligand (RANKL) binding to RANK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。