EF1α-associated protein complexes affect dendritic spine plasticity by regulating microglial phagocytosis in Fmr1 knock-out mice

EF1α 相关蛋白复合物通过调节 Fmr1 基因敲除小鼠的小胶质细胞吞噬作用影响树突棘可塑性

阅读:5
作者:Ping Su, Shuxin Yan, Kai Chen, Lianyan Huang, Le Wang, Frankie Hang Fung Lee, Hang Zhou, Terence Kai Ying Lai, Anlong Jiang, James Samsom, Albert H C Wong, Guang Yang, Fang Liu

Abstract

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. There is no specific treatment for FXS due to the lack of therapeutic targets. We report here that Elongation Factor 1α (EF1α) forms a complex with two other proteins: Tripartite motif-containing protein 3 (TRIM3) and Murine double minute (Mdm2). Both EF1α-Mdm2 and EF1α-TRIM3 protein complexes are increased in the brain of Fmr1 knockout mice as a result of FMRP deficiency, which releases the normal translational suppression of EF1α mRNA and increases EF1α protein levels. Increased EF1α-Mdm2 complex decreases PSD-95 ubiquitination (Ub-PSD-95) and Ub-PSD-95-C1q interaction. The elevated level of TRIM3-EF1α complex is associated with decreased TRIM3-Complement Component 3 (C3) complex that inhibits the activation of C3. Both protein complexes thereby contribute to a reduction in microglia-mediated phagocytosis and dendritic spine pruning. Finally, we created a peptide that disrupts both protein complexes and restores dendritic spine plasticity and behavioural deficits in Fmr1 knockout mice. The EF1α-Mdm2 and EF1α-TRIM3 complexes could thus be new therapeutic targets for FXS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。