ALUMINUM RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O. sativa)

铝抗性转录因子 1 (ART1) 导致水稻 (O. sativa) 不同遗传背景下的铝抗性自然变异

阅读:6
作者:Juan D Arbelaez, Lyza G Maron, Timothy O Jobe, Miguel A Piñeros, Adam N Famoso, Ana Rita Rebelo, Namrata Singh, Qiyue Ma, Zhangjun Fei, Leon V Kochian, Susan R McCouch

Abstract

Transcription factors (TFs) regulate the expression of other genes to indirectly mediate stress resistance mechanisms. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with genes in the genetic background. Here, we fine-mapped the aluminum (Al) resistance QTL Alt12.1 to a 44-kb region containing six genes. Among them is ART1, which encodes a C2H2-type zinc finger TF required for Al resistance in rice. The mapping parents, Al-resistant cv Azucena (tropical japonica) and Al-sensitive cv IR64 (indica), have extensive sequence polymorphism within the ART1 coding region, but similar ART1 expression levels. Using reciprocal near-isogenic lines (NILs) we examined how allele-swapping the Alt12.1 locus would affect plant responses to Al. Analysis of global transcriptional responses to Al stress in roots of the NILs alongside their recurrent parents demonstrated that the presence of the Alt12.1 from Al-resistant Azucena led to greater changes in gene expression in response to Al when compared to the Alt12.1 from IR64 in both genetic backgrounds. The presence of the ART1 allele from the opposite parent affected the expression of several genes not previously implicated in rice Al tolerance. We highlight examples where putatively functional variation in cis-regulatory regions of ART1-regulated genes interacts with ART1 to determine gene expression in response to Al. This ART1-promoter interaction may be associated with transgressive variation for Al resistance in the Azucena × IR64 population. These results illustrate how ART1 interacts with the genetic background to contribute to quantitative phenotypic variation in rice Al resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。