Changes of Mutations and Copy-Number and Enhanced Cell Migration during Breast Tumorigenesis

乳腺肿瘤发生过程中基因突变和拷贝数的变化以及细胞迁移增强

阅读:5
作者:Seung Hyuk T Lee, Joon Yup Kim, Peter Kim, Zhipeng Dong, Chia-Yi Su, Eun Hyun Ahn

Abstract

Although cancer stem cells (CSCs) play a major role in tumorigenesis and metastasis, the role of genetic alterations in invasiveness of CSCs is still unclear. Tumor microenvironment signals, such as extracellular matrix (ECM) composition, significantly influence cell behaviors. Unfortunately, these signals are often lost in in vitro cell culture. This study determines putative CSC populations, examines genetic changes during tumorigenesis of human breast epithelial stem cells, and investigates single-cell migration properties on ECM-mimetic platforms. Whole exome sequencing data indicate that tumorigenic cells have a higher somatic mutation burden than non-tumorigenic cells, and that mutations exclusive to tumorigenic cells exhibit higher predictive deleterious scores. Tumorigenic cells exhibit distinct somatic copy number variations (CNVs) including gain of duplications in chromosomes 5 and 8. ECM-mimetic topography selectively enhances migration speed of tumorigenic cells, but not of non-tumorigenic cells, and results in a wide distribution of tumorigenic single-cell migration speeds, suggesting heterogeneity in cellular sensing of contact guidance cues. This study identifies mutations and CNVs acquired during breast tumorigenesis, which can be associated with enhanced migration of breast tumorigenic cells, and demonstrates that a nanotopographically-defined platform can be applied to recapitulate an ECM structure for investigating cellular migration in the simulated tumor microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。