LncRNA Airsci increases the inflammatory response after spinal cord injury in rats through the nuclear factor kappa B signaling pathway

LncRNA Airsci 通过核因子 κB 信号通路增加大鼠脊髓损伤后的炎症反应

阅读:6
作者:Tao Zhang, Kang Li, Zi-Lu Zhang, Kai Gao, Chao-Liang Lv

Abstract

Spinal cord injury (SCI) is a serious traumatic event to the central nervous system. Studies show that long non-coding RNAs (lncRNAs) play an important role in regulating the inflammatory response in the acute stage of SCI. Here, we investigated a new lncRNA related to spinal cord injury and acute inflammation. We analyzed the expression profile of lncRNAs after SCI, and explored the role of lncRNA Airsci (acute inflammatory response in SCI) on recovery following acute SCI. The rats were divided into the control group, SCI group, and SCI + lncRNA Airsci-siRNA group. The expression of inflammatory factors, including nuclear factor kappa B [NF-κB (p65)], NF-κB inhibitor IκBα and phosphorylated IκBα (p-IκBα), and the p-IκBα/IκBα ratio were examined 1-28 days after SCI in rats by western blot assay. The differential lncRNA expression profile after SCI was assessed by RNA sequencing. The differentially expressed lncRNAs were analyzed by bioinformatics technology. The differentially expressed lncRNA Airsci, which is involved in NF-κB signaling and associated with the acute inflammatory response, was verified by quantitative real-time PCR. Interleukin (IL-1β), IL-6 and tumor necrosis factor (TNF-α) at 3 days after SCI were measured by western blot assay and quantitative real-time PCR. The histopathology of the spinal cord was evaluated by hematoxylin-eosin and Nissl staining. Motor function was assessed with the Basso, Beattie and Bresnahan Locomotor Rating Scale. Numerous differentially expressed lncRNAs were detected after SCI, including 151 that were upregulated and 186 that were downregulated in the SCI 3 d group compared with the control group. LncRNA Airsci was the most significantly expressed among the five lncRNAs involved in the NF-κB signaling pathway. LncRNA Airsci-siRNA reduced the inflammatory response by inhibiting the NF-κB signaling pathway, alleviated spinal cord tissue injury, and promoted the recovery of motor function in SCI rats. These findings show that numerous lncRNAs are differentially expressed following SCI, and that inhibiting lncRNA Airsci reduces the inflammatory response through the NF-κB signaling pathway, thereby promoting functional recovery. All experimental procedures and protocols were approved by the approved by the Animal Ethics Committee of Jining Medical University (approval No. JNMC-2020-DW-RM-003) on January 18, 2020.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。