A difficulty predictor for perceptual category learning

感知类别学习的难度预测指标

阅读:11
作者:Luke A Rosedahl, F Gregory Ashby

Abstract

Predicting human performance in perceptual categorization tasks in which category membership is determined by similarity has been historically difficult. This article proposes a novel biologically motivated difficulty measure that can be generalized across stimulus types and category structures. The new measure is compared to 12 previously proposed measures on four extensive data sets that each included multiple conditions that varied in difficulty. The studies were highly diverse and included experiments with both continuous- and binary-valued stimulus dimensions, a variety of different stimulus types, and both linearly and nonlinearly separable categories. Across these four applications, the new measure was the most successful at predicting the observed rank ordering of conditions by difficulty, and it was also the most accurate at predicting the numerical values of the mean error rates in each condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。