Comparison of actual and simulated tumoricidal effects induced by photodynamic therapy

光动力疗法诱导的实际和模拟肿瘤杀伤效果比较

阅读:4
作者:Wendong Jin, Xiafei Shi, Huijuan Yin, Haixia Zhang, Zhiyuan Wang, Qianqian Chen, Hongjun Wu, Yu Han, Yinxin Li

Conclusions

Although the optical distribution model predicted tumor necrosis caused by PDT, it was ineffective in predicting the sites of apoptosis and vascular destruction. Mathematical modeling is limited in its capabilities required to gain a comprehensive understanding of the spatiotemporal events associated with PDT. The mouse model developed here will serve as a platform for detailed direct histopathological, biochemical, and molecular genetic analyses of the effects of PDT, which will facilitate the development of optimized treatment strategies.

Methods

We prepared approximately 700 5-μm-thick serial sections of breast tumors of syngeneic mice treated with PDT employing the photosensitizer photocarcinorin (PsD-007, a second-generation photosensitizer developed in China). Three adjoining sections were subjected to hematoxylin and eosin staining to assess necrosis, the TUNEL assay to evaluate apoptosis, and CD31 staining to detect angiogenesis, respectively. We then generated a three-dimensional (3D) reconstruction of the tumor to evaluate these processes. We simultaneously used the Monte Carlo method to develop a model of light distribution throughout the tumor to evaluate the actual and simulated tumor killing effects induced by PDT.

Results

Tumor necrosis decreased exponentially as a function of distance from the source of illumination, while the distributions of apoptosis and neovascularization were independent of light distribution. Most apoptosis occurred in the lower layers (3000-4000 μm) of the tumor where the light intensity was too low to excite the photosensitizer. Neovascularization occurred at depths ranging from 2500 to 3500 μm. These analyses provided a 3D view of how a tumor is destroyed using PDT. Conclusions: Although the optical distribution model predicted tumor necrosis caused by PDT, it was ineffective in predicting the sites of apoptosis and vascular destruction. Mathematical modeling is limited in its capabilities required to gain a comprehensive understanding of the spatiotemporal events associated with PDT. The mouse model developed here will serve as a platform for detailed direct histopathological, biochemical, and molecular genetic analyses of the effects of PDT, which will facilitate the development of optimized treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。