Immobilization leads to alterations in intracellular phosphagen and creatine transporter content in human skeletal muscle

固定会导致人体骨骼肌细胞内磷酸原和肌酸转运蛋白含量发生改变

阅读:5
作者:Dan Luo, Sophie Edwards, Benoit Smeuninx, James McKendry, Yusuke Nishimura, Molly Perkins, Andrew Philp, Sophie Joanisse, Leigh Breen

Abstract

The role of dysregulated intracellular creatine (Cr) metabolism in disuse atrophy is unknown. In this study, skeletal muscle biopsy samples were obtained after 7 days of unilateral leg immobilization (IMMOB) and from the nonimmobilized control limb (CTRL) of 15 healthy men (23.1 ± 3.5 yr). Samples were analyzed for fiber type cross-sectional area (CSA) and creatine transporter (CreaT) at the cell membrane periphery (MEM) or intracellular (INT) areas, via immunofluorescence microscopy. Creatine kinase (CK) and AMP-activated protein kinase (AMPK) were determined via immunoblot. Phosphocreatine (PCr), Cr, and ATP were measured via enzymatic analysis. Body composition and maximal isometric knee extensor strength were assessed before and after disuse. Leg strength and fat-free mass were reduced in IMMOB (~32% and 4%, respectively; P < 0.01 for both). Type II fiber CSA was smaller (~12%; P = 0.028) and intramuscular PCr lower (~13%; P = 0.015) in IMMOB vs. CTRL. CreaT protein was greater in type I fibers in both limbs (P < 0.01). CreaT was greater in IMMOB vs. CTRL (P < 0.01) and inversely associated with PCr concentration in both limbs (P < 0.05). MEM CreaT was greater than INT CreaT in type I and II fibers of both limbs (~14% for both; P < 0.01 for both). Type I fiber CreaT tended to be greater in IMMOB vs. CTRL (P = 0.074). CK was greater and phospho-to-total AMPKThr172 tended to be greater, in IMMOB vs. CTRL (P = 0.013 and 0.051, respectively). These findings suggest that modulation of intracellular Cr metabolism is an adaptive response to immobilization in young healthy skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。