Lumican overexpression exacerbates lipopolysaccharide-induced renal injury in mice

Lumican 过表达加剧小鼠脂多糖诱导的肾损伤

阅读:6
作者:Xiao-Mei Lu, Ling Ma, Yu-Nan Jin, Yan-Qiu Yu

Abstract

The present study aimed to investigate the role of lumican in mice with endotoxin-induced acute renal failure (ARF). Lumican transgenic mice and wild‑type mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to establish a model of ARF. The mice were sacrificed at 24 h and the blood and renal tissue samples were collected. The value of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to determine renal function. An ELISA was used to determined the concentrations of renal cytokines, including tumor necrosis factor (TNF)α, interleukin (IL)‑6, IL‑4 and IL‑10. The protein expression levels of Toll-like receptor (TLR4) and nuclear factor (NF)κB in renal tissues were assessed using western blot analysis. Terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling was performed to monitor apoptosis of renal tissue. Light microscopy and electron microscopy were used to observe structural changes in the renal tissues. Following the administration of LPS, the SCr and BUN values of mice in the lumican transgenic group were higher compared with those in the control group. The expression levels of renal TLR4, NFκB, TNFα, IL‑6, IL‑4 and IL‑10 were upregulated in the lumican transgenic mice compared with those in the wild‑type control group. Apoptosis was detected predominantly on the renal tubule. There was a significant difference in the optical density of apoptotic bodies between the control mice and the lumican transgenic mice. Light and electron microscopy demonstrated more severe renal tissue injury in the lumican transgenic mice compared with that in the control mice. In conclusion, LPS may cause excessive apoptosis in the renal tubular cells via the TLR4 signal transduction pathway, a decrease in the number of renal tubular cells and ARF. Lumican may be important in mice with LPS-induced ARF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。