Cryopreservation of clonal and polyclonal populations of Chlamydomonas reinhardtii

莱茵衣藻克隆和多克隆种群的冷冻保存

阅读:5
作者:Jacob Boswell, Charles Ross Lindsey, Emily Cook, Frank Rosenzweig, Matthew Herron

Abstract

Long-term preservation of laboratory strains of Chlamydomonas reinhardtii has historically involved either liquid nitrogen cryopreservation, which is expensive and labor intensive, or storage on agar plates, which requires frequent transfer to new plates, and which may leave samples susceptible to contamination as well as genetic drift and/or selection. The emergence of C. reinhardtii as a model organism for genetic analysis and experimental evolution has produced an increasing demand for an efficient method to cryopreserve C. reinhardtii populations. The GeneArt™ Cryopreservation Kit for Algae provides the first method for algal storage at -80°C; however, little is known about how this method affects recovery of different clones, much less polyclonal populations. Here, we compare postfreeze viability of clonal and genetically mixed samples frozen at -80°C using GeneArt™ or cryopreserved using liquid nitrogen. We find that the GeneArt™ protocol yields similar percent recoveries for some but not all clonal cultures, when compared to archiving via liquid N2. We also find that relative frequency of different strains recovered from genetically mixed populations can be significantly altered by cryopreservation. Thus, while cryopreservation using GeneArt™ is an effective means for archiving certain clonal populations, it is not universally so. Strain-specific differences in freeze-thaw tolerance complicate the storage of different clones, and may also bias the recovery of different genotypes from polyclonal populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。