Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation

短期睡眠剥夺后大鼠海马和肾上腺的蛋白质组学变化

阅读:6
作者:Jean-Etienne Poirrier, François Guillonneau, Jenny Renaut, Kjell Sergeant, Andre Luxen, Pierre Maquet, Pierre Leprince

Background

To identify the biochemical changes induced by sleep deprivation at a proteomic level, we compared the hippocampal proteome of rats either after 4 hours of sleep or sleep deprivation obtained by gentle handling. Because sleep deprivation might induce some stress, we also analyzed proteomic changes in rat adrenals in the same conditions. After sleep deprivation, proteins from both tissues were extracted and subjected to 2D-DIGE analysis followed by protein identification through mass spectrometry and database search.

Conclusion

At a proteomic level, short term sleep deprivation is characterized by a higher expression of some proteins in the hippocampus and a lower abundance of other proteins in the adrenals (compared to normal sleep control). Altogether, this could indicate a general activation of a number of cellular mechanisms involved in the maintenance of wakefulness and in increased energy expenditure during sleep deprivation. These findings are relevant to suggested functions of sleep like energy repletion and the restoration of molecular stocks or a more global homeostasis of synaptic processes.

Results

In the hippocampus, 87 spots showed significant variation between sleep and sleep deprivation, with more proteins showing higher abundance in the latter case. Of these, 16 proteins were present in sufficient amount for a sequencing attempt and among the 12 identified proteins, inferred affected cellular functions include cell metabolism, energy pathways, transport and vesicle trafficking, cytoskeleton and protein processing. Although we did not observe classical, macroscopic effect of stress in sleep-deprived rats, 47 protein spots showed significant variation in adrenal tissue between sleep and sleep deprivation, with more proteins showing higher abundance following sleep. Of these, 16 proteins were also present in sufficient amount for a sequencing attempt and among the 13 identified proteins, the most relevant cellular function that was affected was cell metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。