miR-29c-3p Attenuates beta-Amyloid-Induced Neurotoxicity in Alzheimer's Disease Through Regulating beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1

miR-29c-3p 通过调节 β 位点淀粉样蛋白前体蛋白裂解酶 1 减轻阿尔茨海默病中 β 淀粉样蛋白诱导的神经毒性

阅读:8
作者:X Wang, M Li, Y Hu

Abstract

The aberrantly expressed microRNAs (miRNAs) including miR-29c-3p have been reported in the brains of Alzheimer's disease (AD) patients in recent researches. Nevertheless, the functional role and underlying molecular mechanism of miR-29c-3p in AD pathogenesis are still not well elucidated. The purpose of this study was to examine whether miR-29c-3p regulated beta-Ameyloid (Abeta)-induced neurotoxicity by targeting beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). The expressions of miR 29c 3p and BACE1 mRNA and protein levels in Abeta-treated PC12 cellular AD model were examined by qRT-PCR and western blot analyses. Luciferase reporter assay verified the potential target of miR 29c 3p. Cell viability, apoptosis, and caspase-3 activity in PC12 cells were detected by the MTT assay, flow cytometry, and caspase-3 activity assay, respectively. Our results indicated that miR-29c-3p downregulation and BACE1 upregulation existed in the cellular AD model of PC12 cells. Moreover, miR-29c-3p directly inhibited BACE1 expression. miR-29c-3p overexpression and BACE1 knockdown strengthened Abeta-induced cell apoptosis, and caspase-3 activity in PC12 cells, which was partially eliminated by over-expression of BACE1. Conversely, BACE1 knockdown reversed the miR-29c-3p inhibition- mediated inhibitory effect on Abeta-induced cell toxicity, apoptosis, and caspase-3 activity in PC12 cells. Considering, miR-29c-3p attenuated Abeta-induced neurotoxicity through targeting BACE1 in an cellular AD model of PC12, providing a potential therapeutic target for AD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。