VSIG4 inhibits RANKL-induced osteoclastogenesis by enhancing Nrf2-dependent antioxidant response against reactive oxygen species production

VSIG4 通过增强 Nrf2 依赖的抗氧化反应来抑制活性氧的产生,从而抑制 RANKL 诱导的破骨细胞生成

阅读:10
作者:Jiansen Miao, Yiting Tu, Junchen Jiang, Rufeng Ren, Qihang Wu, Haibo Liang, Tengjie Wang, Binghao Lin, Jingtao Wu, Youjin Pan, Xiangyang Wang, Haiming Jin

Abstract

Osteoporosis is a prevalent systemic skeletal disorder, particularly affecting postmenopausal women, primarily due to excessive production and activation of osteoclasts. However, the current anti-osteoporotic drugs utilized in clinical practice may lead to certain side effects. Therefore, it is necessary to further unravel the potential mechanisms regulating the osteoclast differentiation and to identify novel targets for osteoporosis treatment. This study revealed the most significant decline in VSIG4 expression among the VSIG family members. VSIG4 overexpression significantly inhibited RANKL-induced osteoclastogenesis and bone resorption function. Mechanistically, both western blot and immunofluorescence assay results demonstrated that VSIG4 overexpression attenuated the expression of osteoclast marker genes and dampened the activation of MAPK and NF-κB signaling pathways. Furthermore, VSIG4 overexpression could inhibit the generation of reactive oxygen species (ROS) and stimulate the expression of Nrf2 along with its downstream antioxidant enzymes via interaction with Keap1. Notably, a potent Nrf2 inhibitor, ML385, could reverse the inhibitory effect of VSIG4 on osteoclast differentiation. In line with these findings, VSIG4 overexpression also mitigated bone loss induced by OVX and attenuated the activation of osteoclasts in vivo. In conclusion, our results suggest that VSIG4 holds promise as a novel target for addressing postmenopausal osteoporosis. This is achieved by suppressing osteoclast formation via enhancing Nrf2-dependent antioxidant response against reactive oxygen species production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。