Conclusion
We demonstrate that immunotherapy for PDAC can be potentiated with epigenetic therapy by increasing cancer-associated antigen expression and increased T-cell trafficking across the immunosuppressive tumour microenvironment via upregulation of the repressed chemokines and increased apoptosis with subsequent tumour regression.
Methods
In vitro human PDAC cell lines MiaPaca2 and S2-013 were treated with 5μ m 3-Deazaneplanocin A (DZNep, an EZH2 inhibitor) and 5 μ m 5-Azacytidine (5-AZA, a DNMT1 inhibitor). In vivo orthotopic murine tumour models using both murine PAN02 cells and KPC cells inoculated in immunocompetent C56/BL7 mice were treated with anti-PD-L1 combined with DZNep and 5-AZA. Short hairpin knockdown (KD) of EZH2 and DNMT1 in PAN02 cells for the orthotopic murine tumour model was established to validate the drug treatment (DZNep and 5-AZA). qRT-PCR and microarray assays were performed for the evaluation of Th1-attracting chemokines and cancer-associated antigen induction.
Results
Drug treatments induced significant upregulation of gene expressions of Th1-attracting chemokines, CXCL9 and CXCL10, and the cancer-testis antigens, NY-ESO-1, LAGE and SSX-4 (P < 0.05). In orthotopic tumour models, inoculation of PAN02 cells or KPC cells demonstrated significant tumour regression with corresponding increased apoptosis and infiltration of cytotoxic T lymphocytes in the combination treatment group. In the orthotopic Pan02-KD model, the anti-PD-L1 treatment also caused significant tumour regression.
