EID3 inhibits the osteogenic differentiation of periodontal ligament stem cells and mediates the signal transduction of TAZ-EID3-AKT/MTOR/ERK

EID3抑制牙周膜干细胞成骨分化并介导TAZ-EID3-AKT/MTOR/ERK信号转导

阅读:5
作者:Linglu Jia, Hui Tian, Shaoqing Sun, Xingyao Hao, Yong Wen

Abstract

Exploring the molecular mechanisms of cell behaviors is beneficial for promoting periodontal ligament stem cell (PDLSC)-mediated tissue regeneration. This study intends to explore the regulatory effects of EID3 on cell proliferation, apoptosis, and osteogenic differentiation and to preliminarily explore the regulatory mechanism of EID3. Here, EID3 was overexpressed or knocked down in PDLSCs by recombinant lentivirus. Then, cell proliferation activity was analyzed by colony-forming assay, EdU assay, and cell cycle assay. Cell apoptosis was detected by flow cytometry. The osteo-differentiation potential was analyzed using ALP activity assay, ALP staining, alizarin red staining, and mRNA and protein assay of osteo-differentiation related genes. The results showed that when EID3 was knocked down, the proliferation activity and osteogenic differentiation potential of PDLSCs decreased, while they increased when EID3 was overexpressed. The cell apoptosis rate decreased in PDLSCs with EID3 knockdown but increased in PDLSCs with EID3 overexpression. Moreover, EID3 inhibited the transduction of the AKT/MTOR and ERK signaling pathway. In addition, TAZ negatively regulated the expression of EID3, and the overexpression of EID3 partially reversed the promotive effects of TAZ on the osteogenic differentiation of PDLSCs. Taken together, EID3 inhibits the proliferation and osteogenic differentiation while promoting the apoptosis of PDLSCs. EID3 inhibits the transduction of the AKT/MTOR and ERK signaling pathways and mediates the regulatory effect of TAZ on PDLSC osteogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。