BNIP3 in hypoxia-induced mitophagy: Novel insights and promising target for non-alcoholic fatty liver disease

BNIP3 在缺氧诱导的线粒体自噬中的作用:非酒精性脂肪肝疾病的新见解和有希望的目标

阅读:9
作者:Meiyuan Tian, Jing Hou, Zhe Liu, Zhanquan Li, Dengliang Huang, Yaogang Zhang, Yanyan Ma

Abstract

BNIP3 localizes to the outer mitochondrial membrane, has been demonstrated to be extensively involved in abnormalities to mitochondrial metabolic function and dynamicsand in non-alcoholic fatty liver disease (NAFLD). However, its role in NAFLD under hypoxia remains unclear. This study aimed to investigate the expression and the role of BNIP3 in NAFLD under hypoxia, and explore its involvement in regulating NAFLD mitophagy, fatty acid β-oxidation both in vivo and in vitro. BNIP3-mediated mitophagy level was analyzed using real-time quantitative polymerase chain reaction, Western blotting, immunofluorescence and electron microscopy. The role of BNIP3 in fatty acid β-oxidation was evaluated using lipid droplet staining, triglyceride content determination, and cellular energy metabolism. The results showed that compared with the HFD-2200 m, the body weight, inflammatory liver injury, and lipid deposition were significantly reduced in the HFD-4500 m group (P < 0.05), but autophagy and mitophagy were increased, and the expression of the mitophagy receptor BNIP3 was increased (P < 0.05). Compared to the control group, BNIP3 knockdown in the hypoxia group resulted in decreased levels of CPT1, ATGL, and p-HSL in lipid-accumulating hepatocytes, lipid droplet accumulation and triglyceride content increased (P < 0.05). Moreover, the ability of lipid-accumulating hepatocytes to oxidize fatty acids was reduced by BNIP3 knockdown in the hypoxia group (P < 0.05). Therefore, it can be concluded that, in NAFLD mice under hypoxia, BNIP3-mediated mitophagy promotes fatty acid β-oxidation. This study elucidated the role of BNIP3 in promoting fatty acid β-oxidation in NAFLD under hypoxia, and suggests BNIP3 may serve as a novel potential therapeutic target for NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。