Effect of therapeutic hypothermia against renal injury in a rat model of asphyxial cardiac arrest: Α focus on the survival rate, pathophysiology and antioxidant enzymes

治疗性低温对窒息性心脏骤停大鼠肾损伤的影响:重点关注存活率、病理生理学和抗氧化酶

阅读:5
作者:So Eun Kim #, Ha-Young Shin #, Eui-Yong Lee, Yeo-Jin Yoo, Ryun-Hee Kim, Jeong-Hwi Cho, Tae-Kyeong Lee, Dongchoon Ahn, Byung-Yong Park, Jae Chol Yoon, Seongkweon Hong, In-Shik Kim, Hyun-Jin Tae, Moo-Ho Won

Abstract

Although multi‑organ dysfunction is associated with the survival rate following cardiac arrest (CA), the majority of studies to date have focused on hearts and brains, and few studies have considered renal failure. The objective of the present study, therefore, was to examine the effects of therapeutic hypothermia on the survival rate, pathophysiology and antioxidant enzymes in rat kidneys following asphyxial CA. Rats were sacrificed one day following CA. The survival rate, which was estimated using Kaplan‑Meier analysis, was 42.9% one day following CA. However, hypothermia, which was induced following CA, significantly increased the survival rate (71.4%). In normothermia rats with CA, the serum blood urea nitrogen level was significantly increased one day post‑CA. In addition, the serum creatinine level was significantly increased one day post‑CA. However, in CA rats exposed to hypothermia, the levels of urea nitrogen and creatinine significantly decreased following CA. Histochemical staining revealed a significant temporal increase in renal injury after the normothermia group was subjected to CA. However, renal injury was significantly decreased in the hypothermia group. Immunohistochemical analysis of the kidney revealed a significant decrease in antioxidant enzymes (copper‑zinc superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase and catalase) with time in the normothermia group. However, in the hypothermia group, these enzymes were significantly elevated following CA. Collectively, the results revealed that renal dysfunction following asphyxial CA was strongly associated with the early survival rate and therapeutic hypothermia reduced renal injury via effective antioxidant mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。