Mechanism of lysine oxidase-like 1 promoting synovial inflammation mediating rheumatoid arthritis development

赖氨酸氧化酶样1促进滑膜炎症介导类风湿关节炎发展的机制

阅读:6
作者:Jiawei Hu, Xuqiang Liu, Qiang Xu, Meisong Zhu, Song Wang, Kun Quan, Min Dai, Fengbo Mo, Haibo Zhan

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes great distress to patients and society. Early diagnosis is the key to the successful treatment of RA. The basement membrane, one of the oldest tissue structures, is localized under the epithelium. Its complex composition and rich biological functions have made it a focus of research in recent years, while basement membrane-associated genetic variants are involved in most human disease processes. The aim of this study is to find new diagnostic biomarkers for RA and explore their role and possible mechanism in rheumatoid arthritis. The GSE12021, GSE55235 and GSE55457 datasets were downloaded from the GEO database. Their fraction associated with basement membrane genes was analyzed and differentially expressed genes between the disease and normal groups were explored. We identified two basement membrane-associated genes, lysine oxidase-like 1 (LOXL1) and discoid peptide receptor 2 (DDR2). Focusing on the more interesting LOXL1, we found that LOXL1 expression was significantly elevated in the synovium of patients with rheumatoid arthritis, and LOXL1 mRNA and protein levels were elevated in tumor necrosis factor α-stimulated human synovial sarcoma cells (SW982). And LOXL1 knockdown inhibited tumor necrosis factor α-induced inhibition in SW982 cells expression of inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6). Interestingly, knockdown of LOXL1 inhibited the phosphorylation of PI3K and AKT. In summary, LOXL1 may become a novel diagnostic gene for RA, and knockdown of LoxL1 may inhibit synovial inflammation by affecting PI3K/AKT pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。