Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in Caenorhabditis elegans and Human Cells

秀丽隐杆线虫和人类细胞中的初级纤毛形成和纤毛蛋白运输受非典型 MAP 激酶 MAPK15 调控

阅读:9
作者:Anna Kazatskaya, Stefanie Kuhns, Nils J Lambacher, Julie E Kennedy, Andrea G Brear, Gavin J McManus, Piali Sengupta, Oliver E Blacque

Abstract

Motile and immotile (or primary) cilia are microtubule-based structures that mediate multiple cellular functions, including the transduction of environmental cues, developmental signaling, cellular motility, and modulation of fluid flow. Although their core architectures are similar, motile and primary cilia exhibit marked structural differences that underlie distinct functional properties. However, the extent to which ciliogenesis mechanisms are shared between these different cilia types is not fully described. Here, we report that the atypical MAP kinase MAPK15 (ERK7/8), implicated in the formation of vertebrate motile cilia, also regulates the formation of primary cilia in Caenorhabditis elegans sensory neurons and human cells. We find that MAPK15 localizes to a basal body subdomain with the ciliopathy protein BBS7 and to cell-cell junctions. MAPK15 also regulates the localization of ciliary proteins involved in cilium structure, transport, and signaling. Our results describe a primary cilia-related role for this poorly studied member of the MAPK family in vivo, and indicate a broad requirement for MAPK15 in the formation of multiple ciliary classes across species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。