Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function

长链非编码RNA LncCplx2调节葡萄糖稳态和胰腺β细胞功能

阅读:8
作者:Linlin Wang, Liqiao Hu, Xingyue Wang, Zhaoxu Geng, Meng Wan, Junfeng Hao, Huisheng Liu, Yuying Fan, Tao Xu, Zonghong Li

Conclusions

Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.

Methods

RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors.

Objective

Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown.

Results

We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. Conclusions: Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。