Fatigue of red blood cells under periodic squeezes in ECMO

ECMO 中周期性挤压导致红细胞疲劳

阅读:5
作者:Yunfan Pan, Yan Li, Yongjian Li, Jiang Li, Haosheng Chen

Abstract

Hemolysis usually happens instantly when red blood cells (RBCs) rupture under a high shear stress. However, it is also found to happen gradually in the extracorporeal membrane oxygenation (ECMO) under low but periodic squeezes. In particular, the gradual hemolysis is accompanied by a progressive change in morphology of RBCs. In this work, the gradual hemolysis is studied in a microfluidic device with arrays of narrow gaps the same as the constructions in ECMO. RBCs are seen to deform periodically when they flow through the narrow gaps, which causes the release of adenosine-triphosphate (ATP) from RBCs. The reduced ATP level in the cells leads to the fatigue of RBCs with the progressive changes in morphology and the gradual loss of deformability. An empirical model for the fatigue of RBCs is established under the periodic squeezes with controlled deformation, and it reveals a different way of the hemolysis that is dominated by the squeeze frequency. This finding brings a new insight into the mechanism of hemolysis, and it helps to improve the design of circulatory support devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。