High-Quality Protein Crystal Growth of Mouse Lipocalin-Type Prostaglandin D Synthase in Microgravity

微重力条件下小鼠脂质运载蛋白型前列腺素 D 合酶的高质量蛋白质晶体生长

阅读:6
作者:Koji Inaka, Sachiko Takahashi, Kosuke Aritake, Toshiharu Tsurumura, Naoki Furubayashi, Bin Yan, Erika Hirota, Satoshi Sano, Masaru Sato, Tomoyuki Kobayashi, Yoshinori Yoshimura, Hiroaki Tanaka, Yoshihiro Urade

Abstract

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH(2) to PGD(2) and is involved in the regulation of pain and of nonrapid eye movement sleep and the differentiation of male genital organs and adipocytes, etc. L-PGDS is secreted into various body fluids and binds various lipophilic compounds with high affinities, acting also as an extracellular transporter. Mouse L-PGDS with a C65A mutation was previously crystallized with citrate or malonate as a precipitant, and the X-ray crystallographic structure was determined at 2.0 Å resolution. To obtain high-quality crystals, we tried, unsuccessfully, to crystallize the C65A mutant in microgravity under the same conditions used in the previous study. After further purifying the protein and changing the precipitant to polyethylene glycol (PEG) 8000, high-quality crystals were grown in microgravity. The precipitant solution was 40% (w/v) PEG 8000, 100 mM sodium chloride, and 100 mM HEPES-NaOH (pH 7.0). Crystals grew on board the International Space Station for 11 weeks in 2007, yielding single crystals of the wild-type L-PGDS and the C65A mutant, both of which diffracted at around 1.0 Å resolution. The crystal quality was markedly improved through the use of a high-viscosity precipitant solution in microgravity, in combination with the use of a highly purified protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。