METTL14 contributes to acute lung injury by stabilizing NLRP3 expression in an IGF2BP2-dependent manner

METTL14 通过以 IGF2BP2 依赖的方式稳定 NLRP3 表达,导致急性肺损伤

阅读:7
作者:Fei Cao #, Guojun Chen #, Yixin Xu #, Xintong Wang, Xiaole Tang, Wenyu Zhang, Xiong Song, Xiaohua Yang, Weian Zeng, Jingdun Xie

Abstract

Acute lung injury (ALI) as well as its more severe form, acute respiratory distress syndrome (ARDS), frequently leads to an uncontrolled inflammatory response. N6-methyladenosine (m6A) modification was associated with the progression of several inflammatory diseases. However, the role of methyltransferase-like 14 (METTL14)-mediated m6A methylation in ALI/ARDS remains unclear. Here, we reported an increase in overall expression levels of m6A and METTL14 in circulating monocyte-derived macrophages recruited to the lung following ALI, which is correlated with the severity of lung injury. We further demonstrated the critical function of METTL14 in activating NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in vitro and in mouse models of ALI/ARDS, and validated NLRP3 as the downstream target of METTL14 by the m6A RNA immunoprecipitation (MeRIP) and RIP assays. Mechanistically, METTL14-methylated NLRP3 transcripts were subsequently recognized by insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an m6A reader, which stabilized NLRP3 mRNA. Furthermore, we observed that IGF2BP2 knockdown diminished LPS-induced ALI in mice by downregulating NLRP3 expression. In summation, our study revealed that the molecular mechanism underlying the pathogenesis of ALI/ARDS involves METTL14-mediated activation of NLRP3 inflammasome in an IGF2BP2 dependent manner, thereby demonstrating the potential of METTL14 and IGF2BP2 as promising biomarkers and therapeutic targets for ALI/ARDS treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。