RUNX2 prompts triple negative breast cancer drug resistance through TGF-β pathway regulating breast cancer stem cells

RUNX2通过TGF-β通路调控乳腺癌干细胞促进三阴性乳腺癌药物耐药

阅读:5
作者:Fengxu Lv, Wentao Si, Xiaodan Xu, Xiaogang He, Ying Wang, Yetian Li, Feifei Li

Abstract

Triple-negative breast cancer (TNBC) stands out as the most aggressive subtype within the spectrum of breast cancer. The current clinical guidelines propose treatment strategies involving cytotoxic agents like epirubicin or paclitaxel. However, the emergence of acquired resistance frequently precipitates secondary tumor recurrence or the spread of metastasis. In recent times, significant attention has been directed toward the transcription factor RUNX2, due to its pivotal role in both tumorigenesis and the progression of cancer. Previous researches suggest that RUNX2 might be intricately linked to the development of resistance against chemotherapy, with its mechanism of action possibly intertwined with the signaling of TGF-β. Nevertheless, the precise interplay between their effects and the exact molecular mechanisms underpinning chemoresistance in TNBC remain elusive. Therefore, we have taken a multifaceted approach from in vitro and in vivo experiments to validate the relationship between RUNX2 and TGF-β and to search for their pathogenic mechanisms in chemoresistance. In conclusion, we found that RUNX2 affects chemoresistance by regulating cancer cell stemness through direct binding to TGF-β, and that TGF-β dually regulates RUNX2 expression. The important finding will provide a new reference for clinical reversal of the development of chemoresistance in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。