Label-Free, High-Throughput Assay of Human Dendritic Cells from Whole-Blood Samples with Microfluidic Inertial Separation Suitable for Resource-Limited Manufacturing

利用微流体惯性分离技术对全血样本中的人类树突状细胞进行无标记、高通量分析,适合资源有限的制造

阅读:8
作者:Mohamed Yousuff Caffiyar, Kue Peng Lim, Ismail Hussain Kamal Basha, Nor Hisham Hamid, Sok Ching Cheong, Eric Tatt Wei Ho

Abstract

Microfluidics technology has not impacted the delivery and accessibility of point-of-care health services, like diagnosing infectious disease, monitoring health or delivering interventions. Most microfluidics prototypes in academic research are not easy to scale-up with industrial-scale fabrication techniques and cannot be operated without complex manipulations of supporting equipment and additives, such as labels or reagents. We propose a label- and reagent-free inertial spiral microfluidic device to separate red blood, white blood and dendritic cells from blood fluid, for applications in health monitoring and immunotherapy. We demonstrate that using larger channel widths, in the range of 200 to 600 µm, allows separation of cells into multiple focused streams, according to different size ranges, and we utilize a novel technique to collect the closely separated focused cell streams, without constricting the channel. Our contribution is a method to adapt spiral inertial microfluidic designs to separate more than two cell types in the same device, which is robust against clogging, simple to operate and suitable for fabrication and deployment in resource-limited populations. When tested on actual human blood cells, 77% of dendritic cells were separated and 80% of cells remained viable after our assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。