LncRNA RBPMS-AS1 promotes NRGN transcription to enhance the radiosensitivity of glioblastoma through the microRNA-301a-3p/CAMTA1 axis

LncRNA RBPMS-AS1通过microRNA-301a-3p/CAMTA1轴促进NRGN转录增强胶质母细胞瘤的放射敏感性

阅读:5
作者:Wenyang Li, Yan Cui, Wenjia Ma, Ming Wang, Yang Cai, Yugang Jiang

Conclusion

RBPMS-AS1 promotes NRGN transcription through the miR-301a-3p/CAMTA1 axis and enhances the radiosensitivity of GBM.

Methods

RBPMS-AS1 and CAMTA1 expression levels were determined in GBM tissues and cells. StarBase v3.0 database was searched for predicting miRNAs that simultaneously bound to RBPMS-AS1 and CAMTA1. pcDNA3.1-RBPMS-AS1, pcDNA3.1-CAMTA1, miR-301a-3p mimic, or pcDNA3.1-RBPMS-AS1/pcDNA3.1-CAMTA1 and miR-301a-3p mimic were transfected into GBM cells to test radiosensitivity, cell proliferation and apoptosis. The interactions of miR-301a-3p with RBPMS-AS1 and CAMTA1, as well as CAMTA1 and NRGN, were confirmed. In vivo imaging technology was utilized to detect tumor growth in orthotopic xenograft tumors, and Ki67 expression was tested in intracranial tumors.

Objective

Glioblastoma (GBM) is the most frequent brain malignancy with high incidence, and long noncoding RNAs (lncRNAs) exerts functions in GBM. In this research, we focused on the capabilities of lncRNA RBPMS-AS1 in radiosensitivity of GBM.

Results

RBPMS-AS1 and CAMTA1 levels were reduced in GBM tissues and cells. miR-301a-3p had a binding site with both RBPMS-AS1 and CAMTA1 and it was the most significantly-upregulated one. Upregulation of RBPMS-AS1 or CAMTA1 enhanced the radiosensitivity and cell apoptosis while suppressing proliferation of GBM cells. Conversely, miR-301a-3p overexpression diminished the radiosensitivity and cell apoptosis while inducing proliferation of GBM cells. Overexpression of RBPMS-AS1 or CAMTA1 reversed the effects of overexpressed miR-301a-3p in GBM cells. Mechanistically, RBPMS-AS1 enhanced CAMTA1 expression in GBM cells through sponging miR-301a-3p, and CAMTA1 promoted NRGN expression. In animal experiments, overexpressed RBPMS-AS1 inhibited tumor growth and the positive expression of Ki67 both before and after radiation therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。