Predicting the course of Alzheimer's progression

预测阿尔茨海默病的进展过程

阅读:6
作者:Samuel Iddi, Dan Li, Paul S Aisen, Michael S Rafii, Wesley K Thompson, Michael C Donohue; Alzheimer’s Disease Neuroimaging Initiative

Abstract

Alzheimer's disease is the most common neurodegenerative disease and is characterized by the accumulation of amyloid-beta peptides leading to the formation of plaques and tau protein tangles in brain. These neuropathological features precede cognitive impairment and Alzheimer's dementia by many years. To better understand and predict the course of disease from early-stage asymptomatic to late-stage dementia, it is critical to study the patterns of progression of multiple markers. In particular, we aim to predict the likely future course of progression for individuals given only a single observation of their markers. Improved individual-level prediction may lead to improved clinical care and clinical trials. We propose a two-stage approach to modeling and predicting measures of cognition, function, brain imaging, fluid biomarkers, and diagnosis of individuals using multiple domains simultaneously. In the first stage, joint (or multivariate) mixed-effects models are used to simultaneously model multiple markers over time. In the second stage, random forests are used to predict categorical diagnoses (cognitively normal, mild cognitive impairment, or dementia) from predictions of continuous markers based on the first-stage model. The combination of the two models allows one to leverage their key strengths in order to obtain improved accuracy. We characterize the predictive accuracy of this two-stage approach using data from the Alzheimer's Disease Neuroimaging Initiative. The two-stage approach using a single joint mixed-effects model for all continuous outcomes yields better diagnostic classification accuracy compared to using separate univariate mixed-effects models for each of the continuous outcomes. Overall prediction accuracy above 80% was achieved over a period of 2.5 years. The results further indicate that overall accuracy is improved when markers from multiple assessment domains, such as cognition, function, and brain imaging, are used in the prediction algorithm as compared to the use of markers from a single domain only.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。