Klf6 aggravates myocardial ischemia/reperfusion injury by activating Acsl4-mediated ferroptosis

Klf6 通过激活 Acsl4 介导的铁死亡加重心肌缺血/再灌注损伤

阅读:5
作者:Ma-Li Qiu, Wei Yan, Mo-Mu Liu

Abstract

Ferroptosis is closely related to myocardial ischemia/reperfusion (I/R) damage. Kruppel-like factor 6 (Klf6) can aggravate renal I/R injury. We aimed to elucidate the role of Klf6 in myocardial I/R damage as well as its potential mechanism. Myocardial I/R mice model and hypoxia/reoxygenation (H/R)-treated HL-1 cells were established. The levels of Fe2+ , MDA, lipid ROS, and ferroptosis-related proteins were measured for assessing ferroptosis. Infarct area, H&E staining, cardiac function, and cell viability were detected for evaluating myocardial injury. Immunohistochemistry, immunofluorescence, western blot, and RT-qPCR were applied for detecting the levels of related genes. The m6A modification of Klf6, as well as the relationships between Klf6 and Mettl3, Igf2bp2, or Acsl4 promoter, was evaluated using MeRIP, RNA immunoprecipitation, RNA pull-down, chromatin immunoprecipitation, and luciferase reporter assay accordingly.Klf6 protein and mRNA levels, as well as Klf6 m6A modification, were elevated in HL-1 cells subjected to H/R and in the heart tissues from I/R mice. In H/R-challenged HL-1 cells, the binding relationships between Klf6 mRNA and Igf2bp2 or Mettl3 were confirmed; moreover, Igf2bp2 or Mettl3 knockdown decreased the Klf6 level and inhibited Klf6 mRNA stability. Klf6 knockdown restrained H/R-triggered cell viability loss, improved I/R-induced myocardial injury, and inhibited ferroptosis in myocardial I/R damage models. Klf6 directly bound to the Acsl4 promoter and positively regulated its expression. Acsl4 overexpression compromised the Klf6 knockdown-generated protective effect in HL-1 cells.m6A modification-regulated Klf6 aggravated myocardial I/R damage through activating Acsl4-mediated ferroptosis, thereby providing one potential target for the treatment of myocardial I/R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。