Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish

活性受体酪氨酸激酶(而非 Brachyury)足以引发斑马鱼脊索瘤

阅读:5
作者:Gianluca D'Agati, Elena María Cabello, Karl Frontzek, Elisabeth J Rushing, Robin Klemm, Mark D Robinson, Richard M White, Christian Mosimann, Alexa Burger

Abstract

The aberrant activation of developmental processes triggers diverse cancer types. Chordoma is a rare, aggressive tumor arising from transformed notochord remnants. Several potentially oncogenic factors have been found to be deregulated in chordoma, yet causation remains uncertain. In particular, sustained expression of TBXT - encoding the notochord regulator protein brachyury - is hypothesized as a key driver of chordoma, yet experimental evidence is absent. Here, we employ a zebrafish chordoma model to identify the notochord-transforming potential of implicated genes in vivo We find that Brachyury, including a form with augmented transcriptional activity, is insufficient to initiate notochord hyperplasia. In contrast, the chordoma-implicated receptor tyrosine kinases (RTKs) EGFR and Kdr/VEGFR2 are sufficient to transform notochord cells. Aberrant activation of RTK/Ras signaling attenuates processes required for notochord differentiation, including the unfolded protein response and endoplasmic reticulum stress pathways. Our results provide the first in vivo evidence against a tumor-initiating potential of Brachyury in the notochord, and imply activated RTK signaling as a possible initiating event in chordoma. Furthermore, our work points at modulating endoplasmic reticulum and protein stress pathways as possible therapeutic avenues against chordoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。