Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device

利用微型、低功率、一次性装置对耐裂解细菌细胞进行机械破碎。

阅读:2
作者:Peter E Vandeventer ,Kris M Weigel, Jose Salazar, Barbara Erwin, Bruce Irvine, Robert Doebler, Ali Nadim, Gerard A Cangelosi, Angelika Niemz

Abstract

Molecular detection of microorganisms requires microbial cell disruption to release nucleic acids. Sensitive detection of thick-walled microorganisms such as Bacillus spores and Mycobacterium cells typically necessitates mechanical disruption through bead beating or sonication, using benchtop instruments that require line power. Miniaturized, low-power, battery-operated devices are needed to facilitate mechanical pathogen disruption for nucleic acid testing at the point of care and in field settings. We assessed the lysis efficiency of a very small disposable bead blender called OmniLyse relative to the industry standard benchtop Biospec Mini-BeadBeater. The OmniLyse weighs approximately 3 g, at a size of approximately 1.1 cm(3) without the battery pack. Both instruments were used to mechanically lyse Bacillus subtilis spores and Mycobacterium bovis BCG cells. The relative lysis efficiency was assessed through real-time PCR. Cycle threshold (C(T)) values obtained at all microbial cell concentrations were similar between the two devices, indicating that the lysis efficiencies of the OmniLyse and the BioSpec Mini-BeadBeater were comparable. As an internal control, genomic DNA from a different organism was spiked at a constant concentration into each sample upstream of lysis. The C(T) values for PCR amplification of lysed samples using primers specific to this internal control were comparable between the two devices, indicating negligible PCR inhibition or other secondary effects. Overall, the OmniLyse device was found to effectively lyse tough-walled organisms in a very small, disposable, battery-operated format, which is expected to facilitate sensitive point-of-care nucleic acid testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。