Driver mutations in USP8 wild-type Cushing's disease

USP8野生型库欣病中的驱动基因突变

阅读:1
作者:Silviu Sbiera ,Luis Gustavo Perez-Rivas ,Lyudmyla Taranets ,Isabel Weigand ,Jörg Flitsch ,Elisabeth Graf ,Camelia-Maria Monoranu ,Wolfgang Saeger ,Christian Hagel ,Jürgen Honegger ,Guillaume Assie ,Ad R Hermus ,Günter K Stalla ,Sabine Herterich ,Cristina L Ronchi ,Timo Deutschbein ,Martin Reincke ,Tim M Strom ,Nikita Popov ,Marily Theodoropoulou ,Martin Fassnacht

Abstract

Background: Medical treatment in Cushing's disease (CD) is limited due to poor understanding of its pathogenesis. Pathogenic variants of ubiquitin specific peptidase 8 (USP8) have been confirmed as causative in around half of corticotroph tumors. We aimed to further characterize the molecular landscape of those CD tumors lacking USP8 mutations in a large cohort of patients. Methods: Exome sequencing was performed on 18 paired tumor-blood samples with wild-type USP8 status. Candidate gene variants were screened by Sanger sequencing in 175 additional samples. The most frequent variant was characterized by further functional in vitro assays. Results: Recurrent somatic hotspot mutations in another deubiquitinase, USP48, were found in 10.3% of analyzed samples. Several possibly damaging variants were found in TP53 in 6 of 18 samples. USP48 variants were associated with smaller tumors and trended toward higher frequency in female patients. They also changed the structural conformation of USP48 and increased its catalytic activity toward its physiological substrates histone 2A and zinc finger protein Gli1, as well as enhanced the stimulatory effect of corticotropin releasing hormone (CRH) on pro-opiomelanocortin production and adrenocorticotropic hormone secretion. Conclusions: USP48 pathogenic variants are relatively frequent in USP8 wild-type tumors and enhance CRH-induced hormone production in a manner coherent with sonic hedgehog activation. In addition, TP53 pathogenic variants may be more frequent in larger CD tumors than previously reported. Keywords: Cushing’s disease; TP53; USP48; driver mutations; genome sequencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。