Sodium nitrite causes relaxation of the isolated rat aorta: By stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle

亚硝酸钠可引起大鼠主动脉离体松弛:通过刺激内皮 NO 合酶和激活血管平滑肌中的可溶性鸟苷酸环化酶

阅读:5
作者:Wei Chih Ling, Yeh Siang Lau, Dharmani Devi Murugan, Paul M Vanhoutte, Mohd Rais Mustafa

Abstract

Ingestion of dietary nitrites lowers arterial blood pressure in experimental animals and in humans. However, the exact mechanism underlying the hypotensive effect of nitrite remains unclear. The present study compared nitrite-induced responses in rings (with or without endothelium) of aortae of 18-20weeks old Wistar-Kyoto Rats (WKY) and spontaneously hypertensive (SHR) rats and investigated the underlying mechanism. Relaxations of aortae from WKY and SHR to increasing concentrations (1nM-100μM) of sodium nitrite (NaNO2) were determined during sustained contractions to phenylephrine, in the absence and presence of pharmacological agents. The nitrite-induced relaxations were concentration-dependent and larger in SHR than in WKY aortic rings. Inhibition of endothelial nitric oxide synthase (eNOS) and the absence of endothelium decreased nitrite-induced relaxations in both WKY and SHR aortae, indicating the role of endothelium-derived nitric oxide (NO) in the response. The involvement of eNOS was further confirmed by increases in phosphorylation of eNOS at ser1177 in HUVEC cells following treatment with sodium nitrite. The presence of NO scavengers decreased the relaxation to nitrite in both WKY and SHR preparations while inhibition of soluble guanylyl cyclase (sGC) abolished the response, indicating that besides producing NO, nitrite also induces relaxation by directly activating the enzyme. Thus, the present study demonstrates that the sensitivity to exogenous nitrite is increased in the aorta of the SHR compared to that of the WKY. The endothelium-dependent component of the relaxation to nitrite involves activation of eNOS with production of endothelium-derived NO, while the endothelium-independent component is due to stimulation of sGC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。