Isoflavone-Enriched Soybean Leaves (Glycine Max) Alleviate Cognitive Impairment Induced by Ovariectomy and Modulate PI3K/Akt Signaling in the Hippocampus of C57BL6 Mice

富含异黄酮的大豆叶 (Glycine Max) 可减轻卵巢切除术引起的认知障碍,并调节 C57BL6 小鼠海马中的 PI3K/Akt 信号传导

阅读:4
作者:Dae Young Yoo, Soonwoong Jung, Jae Soon Kang, Ji Hyeong Baek, Ki Hun Park, Dong Hoon Lee, Sang Soo Kang, Hyun Joon Kim

Background

The estrogen decline during perimenopause can induce various disorders, including cognitive impairment. Phytoestrogens, such as isoflavones, lignans, and coumestans, have been tried as a popular alternative to avoid the side effects of conventional hormone replacement therapy, but their exact mechanisms and risk are not fully elucidated. In this study, we investigated the effects of isoflavone-enriched soybean leaves (IESLs) on the cognitive impairment induced by ovariectomy in female mice. (2)

Conclusions

The positive effects of IESLs on cognitive functions may be closely related to the ER-mediated PI3/Akt signaling pathway in the hippocampus.

Methods

Ovariectomy was performed at 9 weeks of age to mimic menopausal women, and the behavior tests for cognition were conducted 15 weeks after the first administration. IESLs were administered for 18 weeks. (3)

Results

The present study showed the effects of IESLs on the cognitive function in the OVX (ovariectomized) mice. Ovariectomy markedly increased the body weight and fat accumulation in the liver and perirenal fat, but IESL treatment significantly inhibited them. In the behavioral tests, ovariectomy impaired cognitive functions, but administration of IESLs restored it. In addition, in the OVX mice, administration of IESLs restored decreased estrogen receptor (ER) β and PI3K/Akt expression in the hippocampus. (4) Conclusions: The positive effects of IESLs on cognitive functions may be closely related to the ER-mediated PI3/Akt signaling pathway in the hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。