Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome

低剂量雷帕霉素可延长线粒体DNA缺失综合征小鼠模型的寿命

阅读:6
作者:Stephanie E Siegmund, Hua Yang, Rohit Sharma, Martin Javors, Owen Skinner, Vamsi Mootha, Michio Hirano, Eric A Schon

Abstract

Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential 'rapamycin metabolic signature.' These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。