Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells

人类细胞慢性砷暴露致癌转化过程中细胞甲基代谢与适应性外排之间的相互作用

阅读:5
作者:Jean-François Coppin, Wei Qu, Michael P Waalkes

Abstract

After protracted low level arsenic exposure, the normal human prostate epithelial cell line RWPE-1 acquires a malignant phenotype with DNA hypomethylation, indicative of disrupted methyl metabolism, and shows arsenic adaptation involving glutathione overproduction and enhanced arsenic efflux. Thus, the interplay between methyl and glutathione metabolism during this progressive arsenic adaptation was studied. Arsenic-treated cells showed a time-dependent increase in LC50 and a marked increase in homocysteine (Hcy) levels. A marked suppression of S-adenosylmethionine (SAM) levels occurred with decreased methionine adenosyltransferase 2A (converts methionine to SAM) expression and increased negative regulator methionine adenosyltransferase B, suggesting reduced conversion of Hcy to SAM. Consistent with Hcy overproduction, activity and expression of S-adenosylhomocysteine hydrolase (converts S-adenosylhomocysteine to Hcy) were both increased. Expression of cystathionine beta-synthase, a key gene in the transsulfuration pathway, and various glutathione production genes were increased, resulting in a 5-fold increase in glutathione. Arsenic efflux increased along with expression of ATP-binding cassette protein C1, which effluxes arsenic as a glutathione conjugate. Evidence of genomic DNA hypomethylation was observed during early arsenic exposure, indicating that the disruption in methyl metabolism had a potential impact related to oncogenesis. Thus, cellular arsenic adaptation is a dynamic, progressive process that involves decreased SAM recycling and concurrent accumulation of Hcy, which is channeled via transsulfuration to increase glutathione and enhance arsenic efflux but may also impact the carcinogenic process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。