Development and Validation of the Diagnostic Model of 7 Gene in Endometriosis

子宫内膜异位症7基因诊断模型的建立及验证

阅读:6
作者:Ruofei Zhu, Yaqiong Liu, Jie Zhou, Zi Lv, Kun Shi, Jian Xiong

Aims

To explore the diagnostic biomarkers for diagnosing endometriosis. Background: Endometriosis is a benign, progressive, estrogen-dependent gynecological disorder that has highly variant prevalence. Therefore, it is essential to develop reliable diagnostic biomarkers for endometriosis diagnosis. Objective: To explore the diagnostic biomarkers for endometriosis diagnosis. Method: Based on transcriptome data from GSE145701, we identified potential therapeutic targets through the intersection of endometriosis-related genes from weighted gene correlation network analysis (WGCNA) and differential expression analysis. Aprotein-protein interaction (PPI) was constructed. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed for functional enrichment analysis. The intersection of hub genes from topological analysis and module genes from module-based network analysis were selected as core targets, which were used for diagnostic model construction. Its robustness was validated using GSE7305 and GSE134056. Associations of core targets with immune characteristics and pathways were further evaluated. Molecular docking was employed to evaluate the docking affinity between core targets and drugs. Additionally, western blot and quantitative real-time polymerase chain reaction were also carried out to validate molecular docking

Background

Endometriosis is a benign, progressive, estrogen-dependent gynecological disorder that has highly variant prevalence. Therefore, it is essential to develop reliable diagnostic biomarkers for endometriosis diagnosis.

Conclusion

These results may facilitate the in-depth understanding of the development of endometriosis, and guide early diagnostic as well as clinical treatments for patients with endometriosis.

Objective

To explore the diagnostic biomarkers for endometriosis diagnosis. Method: Based on transcriptome data from GSE145701, we identified potential therapeutic targets through the intersection of endometriosis-related genes from weighted gene correlation network analysis (WGCNA) and differential expression analysis. Aprotein-protein interaction (PPI) was constructed. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed for functional enrichment analysis. The intersection of hub genes from topological analysis and module genes from module-based network analysis were selected as core targets, which were used for diagnostic model construction. Its robustness was validated using GSE7305 and GSE134056. Associations of core targets with immune characteristics and pathways were further evaluated. Molecular docking was employed to evaluate the docking affinity between core targets and drugs. Additionally, western blot and quantitative real-time polymerase chain reaction were also carried out to validate molecular docking

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。