Notch pathway inhibitor DAPT accelerates in vitro proliferation and adipogenesis in infantile hemangioma stem cells

Notch 通路抑制剂 DAPT 加速婴儿血管瘤干细胞体外增殖和脂肪形成

阅读:8
作者:Xing Xu, Yao Wu, Honghong Li, Juan Xie, Dongsheng Cao, Xueying Huang

Abstract

The Notch signaling pathway is crucial in both adipogenesis and tumor development. It serves a vital role in the development and stability of blood vessels and may be involved in the proliferative phase of infantile hemangiomas, which express various related receptors. Therefore, it was hypothesized that the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, might help accelerate the regression of infantile hemangiomas. The present in vitro study evaluated whether inhibition of the Notch signaling pathway using DAPT could alter adipogenesis in hemangioma stem cells (HemSCs) derived from infantile hemangioma (IH) specimens. A total of 20 infants (age, ≤6 months) with hemangiomas who had not yet received any treatment were selected, and their discarded hemangioma tissues were obtained. HemSCs were isolated from the fresh, sterile IH specimens and treated with DAPT. Reverse transcription-quantitative PCR and western blotting were used to demonstrate the inhibition of the Notch signaling pathway by DAPT. A proliferation assay (Cell Counting Kit-8), oil red O staining, flow cytometry and a transwell assay were used to detect proliferation, adipogenesis, apoptosis and migration of HemSCs. Treatment with DAPT upregulated the expression levels of CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ, peroxisome proliferator-activated receptor-γ, adiponectin and insulin-like growth factor 1, and promoted the proliferation, apoptosis, migration and lipid accumulation in HemSCs in vitro. Targeting the Notch signaling pathway using DAPT may potentially accelerate the regression of infantile hemangiomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。