Astragaloside IV enhances the sensitivity of breast cancer stem cells to paclitaxel by inhibiting stemness

黄芪甲苷IV通过抑制干性增强乳腺癌干细胞对紫杉醇的敏感性

阅读:2
作者:Ping Huang # ,Huachao Li # ,Liping Ren # ,Haimei Xie ,Liushan Chen ,Yuqi Liang ,Yuyu Hu ,Heloisa Sobreiro Selistre-de-Araujo ,Stergios Boussios ,Sachin R Jhawar ,Rutao Cui ,Qian Zuo ,Qianjun Chen

Abstract

Background: Chemotherapy is one of the common treatments for breast cancer. The induction of cancer stem cells (CSCs) is an important reason for chemotherapy failure and breast cancer recurrence. Astragaloside IV (ASIV) is one of the effective components of the traditional Chinese medicine (TCM) Astragalus membranaceus, which can improve the sensitivity of various tumors to chemotherapy drugs. Here, we explored the sensitization effect of ASIV to chemotherapy drug paclitaxel (PTX) in breast cancer from the perspective of CSCs. Methods: The study included both in vitro and in vivo experiments. CSCs from the breast cancer cell line MCF7 with stem cell characteristics were successfully induced in vitro. Cell viability and proliferation were detected using the Cell Counting Kit-8 (CCK-8) and colony formation assays, and flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) methods were performed to detect cell apoptosis. Stemness-related protein expression was determined by western blotting (WB) and immunohistochemistry (IHC). Body weight, histopathology, and visceral organ damage of mice were used to monitor drug toxicity. Results: The expression of stemness markers including Sox2, Nanog, and ALDHA1 was stronger in MCF7-CSCs than in MCF7. PTX treatment inhibited the proliferation of tumor cells by promoting cell apoptosis, whereas the stemness of breast cancer stem cells (BCSCs) resisted the effects of PTX. ASIV decreased the stemness of BCSCs, increased the sensitivity of BCSCs to PTX, and synergistically promoted PTX-induced apoptosis of breast cancer cells. Our results showed that the total cell apoptosis rate increased by about 25% after adding ASIV compared with BCSCs treated with PTX alone. The in vivo experiments demonstrated that ASIV enhanced the ability of PTX to inhibit the growth of breast cancer. WB and IHC showed that ASIV reduced the stemness of CSCs. Conclusions: In this study, the resistance of breast cancer to PTX was attributed to the existence of CSCs; ASIV weakened the resistance of MCF7-CSCs to PTX by significantly attenuating the hallmarks of breast cancer stemness and improved the efficacy of PTX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。