Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1

Sirt3 通过去乙酰化 YME1L1 减轻 LPS 诱导的肾小管上皮细胞线粒体损伤

阅读:6
作者:Yonghong Jian, Yifei Yang, Lingli Cheng, Xueyan Yang, Hongyan Liu, Wei Li, Yuhan Wan, Dingping Yang

Abstract

Acute kidney injury (AKI) is often secondary to sepsis. Increasing evidence suggests that mitochondrial dysfunction contributes to the pathological process of AKI. In this study, we aimed to examine the regulatory roles of Sirt3 in Lipopolysaccharide (LPS)-induced mitochondrial damage in renal tubular epithelial cells (TECs). Sirt3 knockout mice were intraperitoneally injected with LPS, and cultured TECs were stimulated with LPS to evaluate the effects of Sirt3 on mitochondrial structure and function in TECs. Electron microscopy was used to assess mitochondrial morphology. Immunofluorescence staining was performed to detect protein expression and examine mitochondrial morphology. Western blotting was used to quantify protein expression. We observed that LPS increased apoptosis, induced disturbances in mitochondrial function and dynamics, and downregulated Sirt3 expression in a sepsis-induced AKI mouse model and human proximal tubular (HK-2) cells in vitro. Sirt3 deficiency further exacerbated LPS-induced renal pathological damage, apoptosis and disturbances in mitochondrial function and dynamics. On the contrary, Sirt3 overexpression in HK-2 cells alleviated these lesions. Functional studies revealed that Sirt3 overexpression alleviated LPS-induced mitochondrial damage and apoptosis in TECs by promoting OPA1-mediated mitochondrial fusion through the deacetylation of i-AAA protease (YME1L1), an upstream regulatory molecule of OPA1. Our study has identified Sirt3 as a vital factor that protects against LPS-induced mitochondrial damage and apoptosis in TECs via the YME1L1-OPA1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。