Reduction of therapeutic antibody self-association using yeast-display selections and machine learning

利用酵母展示选择和机器学习减少治疗性抗体的自我关联

阅读:7
作者:Emily K Makowski, Hongwei Chen, Matthew Lambert, Eric M Bennett, Nicole S Eschmann, Yulei Zhang, Jennifer M Zupancic, Alec A Desai, Matthew D Smith, Wenjia Lou, Amendra Fernando, Timothy Tully, Christopher J Gallo, Laura Lin, Peter M Tessier

Abstract

Self-association governs the viscosity and solubility of therapeutic antibodies in high-concentration formulations used for subcutaneous delivery, yet it is difficult to reliably identify candidates with low self-association during antibody discovery and early-stage optimization. Here, we report a high-throughput protein engineering method for rapidly identifying antibody candidates with both low self-association and high affinity. We find that conjugating quantum dots to IgGs that strongly self-associate (pH 7.4, PBS), such as lenzilumab and bococizumab, results in immunoconjugates that are highly sensitive for detecting other high self-association antibodies. Moreover, these conjugates can be used to rapidly enrich yeast-displayed bococizumab sub-libraries for variants with low levels of immunoconjugate binding. Deep sequencing and machine learning analysis of the enriched bococizumab libraries, along with similar library analysis for antibody affinity, enabled identification of extremely rare variants with co-optimized levels of low self-association and high affinity. This analysis revealed that co-optimizing bococizumab is difficult because most high-affinity variants possess positively charged variable domains and most low self-association variants possess negatively charged variable domains. Moreover, negatively charged mutations in the heavy chain CDR2 of bococizumab, adjacent to its paratope, were effective at reducing self-association without reducing affinity. Interestingly, most of the bococizumab variants with reduced self-association also displayed improved folding stability and reduced nonspecific binding, revealing that this approach may be particularly useful for identifying antibody candidates with attractive combinations of drug-like properties.Abbreviations: AC-SINS: affinity-capture self-interaction nanoparticle spectroscopy; CDR: complementarity-determining region; CS-SINS: charge-stabilized self-interaction nanoparticle spectroscopy; FACS: fluorescence-activated cell sorting; Fab: fragment antigen binding; Fv: fragment variable; IgG: immunoglobulin; QD: quantum dot; PBS: phosphate-buffered saline; VH: variable heavy; VL: variable light.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。