Long noncoding RNA PVT1 facilitates high glucose-induced cardiomyocyte death through the miR-23a-3p/CASP10 axis

长链非编码RNA PVT1通过miR-23a-3p/CASP10轴促进高糖诱导的心肌细胞死亡

阅读:7
作者:Feng-Rong Yu, Yin-Wen Xia, Shao-Bo Wang, Li-Hua Xiao

Abstract

Dilated cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetic patients. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been shown to be related to the pathogenesis of DCM. However, the mechanism by which PVT1 regulates DCM pathogenesis is unclear. High glucose level was employed to construct a DCM cell model in vitro. Cell viability was determined via cell counting kit-8 assay. The level of lactate dehydrogenase (LDH) was measured with the corresponding kit. Expression levels of PVT1, miR-23a-3p, and caspase-10 (CASP10) messenger RNA were evaluated with a quantitative real-time polymerase chain reaction. Cell apoptosis was assessed by flow cytometry assay. Protein levels of B-cell lymphoma 2-associated X (Bax), cleaved-caspase-3 (cleaved-casp-3), and CASP10 were examined via western blot analysis. The relationship between PVT1 or CASP10 and miR-23a-3p was verified with dual-luciferase reporter assay. We observed that PVT1 and CASP10 were upregulated while miR-23a-3p was downregulated in high glucose-induced cardiomyocytes. High glucose levels repressed cardiomyocyte activity and induced cardiomyocyte apoptosis, but this influence was antagonized by PVT1 knockdown or miR-23a-3p overexpression. Furthermore, PVT1 acted as a sponge for miR-23a-3p, and miR-23a-3p inhibition counterbalanced the influence of PVT1 silencing on viability and apoptosis of cardiomyocytes under high glucose level treatment. PVT1 could increase CASP10 expression via sponging miR-23a-3p. In conclusion, PVT1 acted as a deleterious lncRNA in DCM. PVT1 facilitated cardiomyocyte death by regulating the miR-23a-3p/CASP10, which offered a new mechanism to comprehend the pathogenesis of DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。