Global landscape of replicative DNA polymerase usage in the human genome

人类基因组中复制性 DNA 聚合酶使用情况的全球格局

阅读:6
作者:Eri Koyanagi #, Yoko Kakimoto #, Tamiko Minamisawa #, Fumiya Yoshifuji #, Toyoaki Natsume, Atsushi Higashitani, Tomoo Ogi, Antony M Carr, Masato T Kanemaki, Yasukazu Daigaku

Abstract

The division of labour among DNA polymerase underlies the accuracy and efficiency of replication. However, the roles of replicative polymerases have not been directly established in human cells. We developed polymerase usage sequencing (Pu-seq) in HCT116 cells and mapped Polε and Polα usage genome wide. The polymerase usage profiles show Polε synthesises the leading strand and Polα contributes mainly to lagging strand synthesis. Combining the Polε and Polα profiles, we accurately predict the genome-wide pattern of fork directionality plus zones of replication initiation and termination. We confirm that transcriptional activity contributes to the pattern of initiation and termination and, by separately analysing the effect of transcription on co-directional and converging forks, demonstrate that coupled DNA synthesis of leading and lagging strands is compromised by transcription in both co-directional and convergent forks. Polymerase uncoupling is particularly evident in the vicinity of large genes, including the two most unstable common fragile sites, FRA3B and FRA3D, thus linking transcription-induced polymerase uncoupling to chromosomal instability. Together, our result demonstrated that Pu-seq in human cells provides a powerful and straightforward methodology to explore DNA polymerase usage and replication fork dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。