Diminished PRRX1 Expression Is Associated With Increased Risk of Atrial Fibrillation and Shortening of the Cardiac Action Potential

PRRX1 表达减少与心房颤动风险增加和心脏动作电位缩短有关

阅读:9
作者:Nathan R Tucker, Elena V Dolmatova, Honghuang Lin, Rebecca R Cooper, Jiangchuan Ye, William J Hucker, Heather S Jameson, Victoria A Parsons, Lu-Chen Weng, Robert W Mills, Moritz F Sinner, Maxim Imakaev, Jordan Leyton-Mange, Gus Vlahakes, Emelia J Benjamin, Kathryn L Lunetta, Steven A Lubitz, Leonid

Background

Atrial fibrillation (AF) affects over 33 million individuals worldwide. Genome-wide association studies have identified at least 30 AF loci, but the mechanisms through which individual variants lead to altered disease risk have remained unclear for the majority of these loci. At the 1q24 locus, we hypothesized that the transcription factor PRRX1 could be a strong candidate gene as it is expressed in the pulmonary veins, a source of AF in many individuals. We sought to identify the molecular mechanism, whereby variation at 1q24 may lead to AF susceptibility.

Conclusions

We have identified a functional genetic variant that alters PRRX1 expression, ultimately resulting in electrophysiological alterations in atrial myocytes that may promote AF.

Results

We sequenced a ≈158 kb region encompassing PRRX1 in 962 individuals with and without AF. We identified a broad region of association with AF at the 1q24 locus. Using in silico prediction and functional validation, we identified an enhancer that interacts with the promoter of PRRX1 in cells of cardiac lineage. Within this enhancer, we identified a single-nucleotide polymorphism, rs577676, which alters enhancer activity in a mouse atrial cell line and in embryonic zebrafish and differentially regulates PRRX1 expression in human left atria. We found that suppression of PRRX1 in human embryonic stem cell-derived cardiomyocytes and embryonic zebrafish resulted in shortening of the atrial action potential duration, a hallmark of AF. Conclusions: We have identified a functional genetic variant that alters PRRX1 expression, ultimately resulting in electrophysiological alterations in atrial myocytes that may promote AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。